Controlling the inhibition of the sarcoplasmic Ca2+-ATPase by tuning phospholamban structural dynamics.

نویسندگان

  • Kim N Ha
  • Nathaniel J Traaseth
  • Raffaello Verardi
  • Jamillah Zamoon
  • Alessandro Cembran
  • Christine B Karim
  • David D Thomas
  • Gianluigi Veglia
چکیده

Cardiac contraction and relaxation are regulated by conformational transitions of protein complexes that are responsible for calcium trafficking through cell membranes. Central to the muscle relaxation phase is a dynamic membrane protein complex formed by Ca2+-ATPase (SERCA) and phospholamban (PLN), which in humans is responsible for approximately 70% of the calcium re-uptake in the sarcoplasmic reticulum. Dysfunction in this regulatory mechanism causes severe pathophysiologies. In this report, we used a combination of nuclear magnetic resonance, electron paramagnetic resonance, and coupled enzyme assays to investigate how single mutations at position 21 of PLN affects its structural dynamics and, in turn, its interaction with SERCA. We found that it is possible to control the activity of SERCA by tuning PLN structural dynamics. Both increased rigidity and mobility of the PLN backbone cause a reduction of SERCA inhibition, affecting calcium transport. Although the more rigid, loss-of-function (LOF) mutants have lower binding affinities for SERCA, the more dynamic LOF mutants have binding affinities similar to that of PLN. Here, we demonstrate that it is possible to harness this knowledge to design new LOF mutants with activity similar to S16E (a mutant already used in gene therapy) for possible application in recombinant gene therapy. As proof of concept, we show a new mutant of PLN, P21G, with improved LOF characteristics in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles.

The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR ve...

متن کامل

The physical mechanism of calcium pump regulation in the heart.

The Ca-ATPase in the cardiac sarcoplasmic reticulum membrane is regulated by an amphipathic transmembrane protein, phospholamban. We have used time-resolved phosphorescence anisotropy to detect the microsecond rotational dynamics, and thereby the self-association, of the Ca-ATPase as a function of phospholamban phosphorylation and physiologically relevant calcium levels. The phosphorylation of ...

متن کامل

Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.

The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) do...

متن کامل

Chronic Phospholamban–Sarcoplasmic Reticulum Calcium ATPase Interaction Is the Critical Calcium Cycling Defect in Dilated Cardiomyopathy

Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum. The ablation of a muscle-specific sarco...

متن کامل

Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase.

Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 51  شماره 

صفحات  -

تاریخ انتشار 2007